Типы мышечных волокон

Сердечные мышцы

Кровообращение – одна из наиболее важных физиологических функций человека, работа которой обеспечивается благодаря работе сердца, выступающего в качестве некого насоса, перекачивающего кровь по всему организму.


Способность сердца сокращаться в течение всей жизни человека обеспечивается рядом физиологических функций сердечной мышцы. Она является уникальной и сочетает в себе некоторые функции как скелетных, так и гладких мышц. С первыми сердечная мышца схожа тем, что способна быстро сокращаться и интенсивно работать. В то же время, как и гладкие мышцы, мышца сердца работает неутомимо, автономно и не контролируется волей человека. Даже в бессознательном состоянии организма сердце продолжает совершать свою работу.

Основной и очень важной функцией сердечной мышцы является обеспечение движения крови в сосудах за счет своих сокращений.

Физиологическими особенностями сердечной мышцы являются:
автоматизм – возбуждение возникает вследствие процессов, протекающих внутри самой мышцы;
• растяжимость – увеличение длины мышцы не нарушает ее структуры;

• эластичность – способность восстанавливать исходную форму по окончании действия деформирующей силы.

Сердечные мышцы во многом схожи с гладкими. Роль и тех и других сложно переоценить. Будучи незаметными и неподвластными воле человека, они обеспечивают работу, пожалуй, самых жизненно важных органов.

Информация о полинейропатии

Слово «полинейропатия» переводится с греческого языка как «поражение многих нервов». Этот термин очень точно описывает суть патологии. Все структуры организма опутаны сетью тонких нервных волокон, которые делятся на три группы:

  • моторные: отвечают за двигательные функции;
  • сенсорные: обеспечивают чувствительность тканей;
  • автономные (вегетативные): необходимы для неосознанной регуляции деятельности тех или иных структур, например, сосудов или внутренних органов.

Поражение тех или иных волокон неизбежно влечет за собой нарушение их функций. Наиболее распространена смешанная полинейропатия нижних конечностей, при которой проявляются симптомы дисфункции чувствительных и двигательных нервов.

Условия для роста мышц

Итак, что нужно, чтобы росли мышцы?

  • ТРЕНИРОВОЧНЫЙ СТРЕСС (разрушение)! Он нужен для того, чтобы способствовать выработке АНАБОЛИЧЕСКИХ ГОРМОНОВ! Только тогда тело включит процесс роста (анаболизма).
  • ГОРМОНАЛЬНЫЙ ФОН! Нам нужны ГОРМОНЫ, которые копируют информацию о синтезе белка из ДНК клетки. Именно благодаря им метаболизм (обмен веществ) сдвигается в сторону роста (анаболизма). Разрушение белковых структур на тренировке заставляет организм восстанавливать разрушения. Это залечивание, как раз, и называется СИНТЕЗ БЕЛКА.
  • ИОНЫ ВОДОРОДА! О них мы сегодня уже достаточно много говорили. Они РАСКРУЧИВАЮТ СПИРАЛЬ ДНК для того, чтобы информация о синтезе белка стала доступна для считывания гормонами (стероидно-рецепторными комплексами). Если не будет достаточного количества ионов водорода, которые выделяются в ответ на расход АТФ, то у гормонов не будет возможности считать информацию о синтезе белка и запустить рост. ЗАПОМНИТЕ: ГОРМОНЫ (стероиды) без тренировочного стресса НЕ ДАДУТ РЕЗУЛЬТАТА, а ТРЕНИРОВКА БЕЗ ГОРМОНОВ ДАСТ!
  • КРЕАТИНФОСФАТ! Даёт энергию молекуле ДНК для ей быстрой работы. Так же добавка КРЕАТИН МОНОГИДРАТ может способствовать выполнению дополнительных пары повторений на тренировке. Хорошая вещь.
  • АМИНОКИСЛОТЫ для роста! Для того, чтобы вырастить мышцы, нужно чтобы было из чего растить! Аминокислоты – это пластический строительный материал для роста мышц.

Да белок (аминокислоты) очень важен! Но больше в условиях ДИЕТЫ (дефицита простых углеводов). Представьте, когда вы худеете, т.е. не едите углеводы и тренируетесь, то гликогена в ваших мышцах ОЧЕНЬ МАЛО, а значит приходится использовать в качестве энергии аминокислоты (дорогой источник питания). Если вы будете дополнительно пить на тренировке и после аминокислоты, то вы сохраните больше мышц.

Это не выгодно производителям спортивного питания, т.к. БЕЛОК ДОРОЖЕ и с его продажи можно получить БОЛЬШЕ! Но я считаю, что это так. УГЛЕВОДЫ ВАЖНЕЕ, чем белок, особенно в условиях набора мышечной массы, т.к. дают энергию вашим мышцам.

Дело в том, что после тренировки ваше тело ДАЖЕ НЕ ДУМАЕТ о том, чтобы растить мышцы, т.к. оно истощило запасы энергии! Ему надо их восполнить! Именно поэтому следующие два дня после тренировки ваше тело восполняет запасы энергии и даже не думает о росте. А сократительные белки продолжают разрушаться за счёт ферментов – ПРОТЕИНКИНАЗ! Только спустя 2 дня тело запускает восстановление и, как обычно пишут, восстанавливается за 7 дней. Но на самом деле, даже больше. Обычно за 10-14 дней.

Это касается ЛЮБЫХ мышечных волокон (ММВ, БМВ, ВБМВ). Единственная разница в том, что для ММВ сложнее удержать нужную концентрацию ионов водорода, поэтому необходимо выполнять упражнения определённым образом, о чём мы говорили выше в этой статье.

Назначение мышечных волокон

Естественно возникает вопрос, а в чем еще есть разница между мышечными волокнами белого и красного цвета? Во время проведения многочисленных опытов было замечено, что красные волокна сокращаются медленнее, а белые быстрее. Поэтому мышцы, состоящие из красных волокон стали называть медленными, а состоящие из белых волокон быстрыми мышцами. Теперь понемногу начинает проясняться картина, но зачем все это нужно нашему телу?

Наверное, природе не удалось изобрести универсальную мышцу, и она решила сделать два основных типа мышц, но с узкой направленностью действия: быстрые (белые) мышечные волокна и медленные (красные) мышечные волокна.

Типы мышечных волокон: Быстрые (белые) мышечные волокна.

В тех случаях, когда требуется выполнить большую работу и очень быстро — в дело включаются мышцы с белыми волокнами . Потому что они могут быстро сокращаться и давать огромную взрывную силу и мощь, например, профессиональные спринтеры, которые менее чем за 10 секунд пробегают стометровку… Но долго они в таком режиме работать (сокращаться) не могут, так как:

Во-первых – энергетические запасы не вечны и их хватает буквально на пару минут интенсивной работы.

Во — вторых — для восстановления энергетических запасов в мышцах — нужно время (от 2 до 5 минут), чтобы восстановить запасы молекул АТФ (основная энергетическая единица в живом теле) и креатин фосфата (о нем вы узнаете чуть ниже). Теперь вы начинаете понимать, почему тяжелоатлеты отдыхают 1-2 минуты между подходами.

И в-третьих – с каждым повтором (сокращением мышцы), в процессе реакций по выработке энергии – образуются продукты распада (молочная кислота), которая начинает «жечь» мышцы все больше и больше, а в результате от боли и отсутствия сил (энергии) – работа их прекращается.

Энергетическая система быстрых волокон, практически, направлена на анаэробный гликолиз (без кислородный). Почему практически? Да потому что существует два подтипа быстрых волокон: 2А и 2В. 2А – это переходный тип волокон, которые быстро сокращаются, имеют большую силу и используют в качестве энергии как аэробный гликолиз (с участием кислорода: окисление углеводов и жиров), так и анаэробный гликолиз (без участия кислорода). 2В – это уже чистые быстрые волокна, которые ОЧЕНЬ быстро сокращаются, имеют огромную взрывную силу и мощь, а так же для восполнения их энергии требуется анаэробный гликолиз (без кислородный).

Виды мышечных волокон: Медленные (красные) мышечные волокна.

А вот когда необходимо выполнить очень большой объем работы, но не так быстро, на протяжении длительного промежутка времени, то за дело берутся медленные волокна. Потому что они более выносливые, так как используют аэробный гликолиз (с участием кислорода), но не обладают такой силой, мощью и скоростью, как быстрые мышечные волокна. Например, медленные волокна необходимы марафонцам, для которых нужна очень хорошая выносливость.

Однако если раньше все было понятно, то теперь без специальных терминов не обойтись.

Вы определили свой повторный максимум. Что делать дальше?

Отдохните примерно 10 минут, стараясь не остыть. Для этого накиньте на себя более тёплую одежду, желательно с капюшоном. Просто походите по залу и посмотрите, как тренируются другие. Время от времени делайте различные махи руками и наклоны, чтобы поддержать мышцы в тонусе.

После этой паузы выставьте в том самом упражнении вес, равный в точности 80% от повторного максимума.

А затем технически точно (не слишком медленно, не слишком быстро, но обязательно в полную амплитуду) поднимите его столько раз, сколько сможете, прилагая все возможные усилия. Но не перенапрягаясь до темноты в глазах.

Внешние воздействия на мышцу

Итак, скелетная поперечно-полосатая мышца. Она состоит из множества миофибрилл — длинных многоядерных мышечных волокон. Их сокращение происходит в результате смещения нитей миозина относительно актина. Различают два основных типа волокон: быстрые и медленные. Быстрые получают энергию в ходе анаэробного гликолиза. Они способны к стремительным сокращениям, однако в процессе гликолиза в них накапливается молочная кислота, а молекул АТФ образуется мало, поэтому быстрые волокна быстро устают. Медленные волокна хорошо снабжаются кровью и кислородом и получают энергию в процессе окислительного фосфорилирования, более эффективного, чем гликолиз. Однако для доставки кислорода требуется время, поэтому ответа медленных мышц на возбуждение приходится подождать. Зато они дольше работают без признаков утомления. У человека скелетные мышцы содержат оба типа волокон, соотношение которых зависит от роли данной мышцы в организме. Мышцы спины, например, ответственные за поддержание позы, содержат главным образом медленные волокна, а мышцы, которые движут глазные яблоки, — быстрые.

Белок миозин состоит из тяжелых и легких цепей. Тяжелые цепи быстрых и медленных волокон (MyHC) отличаются составом и АТФазной активностью (скоростью расщепления АТФ). Кроме того, быстрые и медленные волокна по-разному снабжаются кровью (рис. 1).

Рисунок 1. Свойства разных типов мышечных волокон  млекопитающих

Казалось бы, судьба мышечного волокна у взрослой особи уже определена, однако внешние сигналы могут ее изменить. Это свойство называется мышечной пластичностью.  Самый известный из таких сигналов —  нервный импульс. Если перерезать аксоны, ведущие от двигательных нервов к быстрой и медленной мышцам, и поменять местами, исходно медленная мышца, получавшая сигнал от быстрого нерва, будет сокращаться быстро, а исходно быстрая — медленно. Одно время исследователи предполагали, что быстрые и медленные нервы выделяют разные трофические факторы, но эта гипотеза не подтвердилась. Скорее, дело в том, что по нерву на медленные или быстрые волокна приходят различные электрические сигналы.  Есть данные о том, что тип сокращения мышечного волокна зависит от количества сигналов, поступивших за определенное время, и их частоты.  Организм чаще использует мышцы, работа которых более энергетически эффективна, то есть медленные.

На мышцу действует не только электрический сигнал, она испытывает механическую нагрузку. Правда, действия двух этих факторов трудно разделить, поскольку электрический импульс вызывает сокращение мышцы и ее механическое напряжение. Тем не менее, воздействие силы само по себе влияет на состояние мышечных волокон. Доказательства копились десятилетиями. Известно, что мышцы ног атрофируются, если конечность долгое время находится в гипсе. Однако, если ногу зафиксировать в вытянутом состоянии, мышцы испытывают механическую нагрузку и атрофируются меньше. Несколько экспериментов показали, что иммобилизация в растянутом положении противодействует атрофии даже в отсутствие нерва.

По некоторым данным, на скорость сокращения влияет длина волокна, так что иммобилизация быстрых мышц в вытянутой, удлиненной позиции, увеличивает долю медленных волокон в ней. 

Красные и белые мышечные волокна

Красные мышечные волокна

Красные мышечные волокна

Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина – пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна

Белые мышечные волокна

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:

  1. Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
  2. Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.

Преимущества нашей клиники

Многопрофильная клиника «Энергия здоровья» – это опытный персонал и самое современное оборудования для диагностики и лечения различных заболеваний. Мы предоставляем каждому клиенту медицинские услуги высокого качества, которые включают:

  • подробное обследование для точного определения причины жалоб;
  • консультации узких специалистов непосредственно в клинике, а также общение с зарубежными врачами при необходимости;
  • комплексное лечение, подобранное в соответствии с показаниями и индивидуальными особенностями организма;
  • малые хирургические операции непосредственно в клинике;
  • собственный дневной стационар для максимального удобства;
  • составление реабилитационных программ;
  • доступные цены и обслуживание в рамках ДМС.

Полинейропатия – это опасное осложнение многих состояний и заболеваний. Не стоит надеяться, что симптомы ограничиваются простым покалыванием, со временем состояние будет ухудшаться. Не затягивайте с обращением к врачу, запишитесь на консультацию к неврологам клиники «Энергия здоровья».

Красные и белые мышечные волокна

Красные мышечные волокна

Красные мышечные волокна

Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна

Белые мышечные волокна

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:

  1. Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
  2. Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.

Лечение полинейропатии конечностей

Лечение направлено на устранение основной причины поражения нервных волокон, восстановление их нормальной работы, а также устранение неприятной для пациента симптоматики.

Эксперт статьи

Кельбялиев Эмил Загидинович

Заместитель главного врача, врач-невролог, иглорефлексотерапевт

В зависимости от причины заболевания может назначаться:

  • препараты для коррекции уровня сахара в крови;
  • антигистаминные средств;
  • иммуноглобулины и глюкокортикостероиды для устранения воспаления и аутоиммунного поражения;
  • плазмаферез и препараты для детоксикации;
  • антибиотики при инфекциях.

Для восстановления нервных волокон используются:

  • витамины группы В (мильгамма, нейромультивит);
  • препараты, улучшающие кровообращение, обмен веществ и регенерацию тканей: актовигин, церебролизин, берлитион (особенно эффективен при сахарном диабете);
  • ангиопротекторы: трентал, пентоксифиллин;
  • средства для усиления проведения нервных импульсов к мышцам: нейромидин.

Симптоматическая терапия включает:

  • нестероидные противовоспалительные средства (ибупрофен, диклофенак, кеторолак), глюкокортикостероиды (гидрокортизон, дексаметазон), анальгетики (анальгин, лидокаин) в виде таблеток, инъекций или местных форм для устранения боли;
  • противосудорожные средства: тебантин, катэна;
  • антидепрессанты при хронической боли;
  • снотворные средства по показаниям.

Большое значение в лечении полинейропатии имеет немедикаментозная терапия. Она включает:

  • общеукрепляющий и лечебный массаж для стимуляции кровообращения в тканях, их питания и регенерации, а также укрепления мышц;
  • электрофорез и фонофорез с анальгетиками, витаминами группы В и другими препаратами (использование электрического тока или ультразвуковых волн облегчает доставку лекарственных средств к пораженной области);
  • электростимуляция мышц;
  • магнитотерапия, УВЧ-терапия, облучение ультрафиолетом;
  • дарсонвализация: воздействие переменного тока высокой частоты для улучшения метаболизма и регенерации тканей;
  • грязелечение: грязевые аппликации на пораженную область;
  • лечебные ванны с минеральными водами или морской солью;
  • лечебная физкультура: дозированная физическая нагрузка обеспечивает укрепление мышц и улучшает кровообращение в них; при запущенной стадии заболевания необходимо начать с самого легкого комплекса и постепенно его усложнять.
  • классическая иглорефлексотерапия и электроакупунктура: стимулируют работу мышечной ткани и нервных волокон;
  • занятия с эрготерапевтом: необходимы, когда не удается полностью восстановить функцию конечности; упражнения направлены на формирование новых движений, адаптированных под возможности руки или ноги.

Для полноценного лечения требуется длительное комплексное воздействие на пораженную область. Только если пациент досконально выполняет все назначения врача, удается добиться успеха, но даже в этом случае полноценное восстановление функций нервных волокон не гарантировано.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий